Home Search Collections Journals About Contact us My IOPscience

High-pressure studies of a ThMn₁₂-type actinide compound: UFe_5AI_7

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys.: Condens. Matter 14 11189 (http://iopscience.iop.org/0953-8984/14/44/451)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.97 The article was downloaded on 18/05/2010 at 17:17

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 11189-11193

PII: S0953-8984(02)39152-5

High-pressure studies of a ThMn₁₂-type actinide compound: UFe₅Al₇

I Halevy¹, S Salhov¹, G Kimmel¹, U Atzmony¹, L C J Pereira², A P Gonçalves² and W Schäfer³

¹ Physics Department, Nuclear Research Centre-Negev, PO Box 9001, Beer-Sheva, Israel

² Instituto Tecnológico e Nuclear, Departamento de Química, P-2686 Sacavém, Portugal

³ Mineralogisch-Petrologisches Institut, Universität Bonn, DE-53115 Bonn, Germany

E-mail: ihalevy@bgumail.bgu.ac.il

Received 1 June 2002 Published 25 October 2002 Online at stacks.iop.org/JPhysCM/14/11189

Abstract

The ternary inter-metallic compound, UFe₅Al₇, crystallize in a tetragonal ThMn₁₂ type structure. In the as-cast samples a residual phase of FeAl ($\sim 2\%$ wt) was identified in the grain boundaries. The amount of the residual cubic phase of FeAl was determined by Rietveld analysis and reduced by the annealing process.

UFe₅Al₇ maintains the tetragonal symmetry as a function of pressure, while FeAl keeps the cubic structure as was determined by the Rietveld analysis. The volume–pressure curve calculated from the x-ray analysis is $V/V_0 = 0.87$ for UFe₅Al₇ at 26.0 GPa.

1. Introduction

Many of the binary and ternary intermetallic compounds AB_{12} and $A(B_xC_{1-x})_{12}$ crystallize in the tetragonal ThMn₁₂-type structure [1]. In this structure the 2a sites are occupied by the A atoms while the three non-equivalent sites 8f, 8i, and 8j accommodate B and the C atoms according to special site preferences. The compounds of this group for which A is a rare earth or an actinide element (Re, An) and B and C are 3d transition elements are of special interest due to their potential use as permanent magnets.

Binary ReFe₁₂ compounds do not exist and the above-mentioned magnetic compounds can be stabilized only as ternary compounds. Of these compounds the Re(Fe_xAl_{1-x})₁₂ compounds exist for $4 \le x \le 7$ [2, 3]. In the present work the structural variation of the UFe₅Al₇ ternary intermetallic compound as a function of applied pressure was investigated.

Figure 1. The morphology of this sample including the two different regions: UFe_5Al_7 and FeAl in the 800 °C heat-treated sample.

2. Experimental details

The sample, UFe₅Al₇, with nominal composition was prepared by arc-melting of stoichiometric amounts of the constituents under an argon atmosphere. The sample was annealed in an evacuated quartz tube and heat treated at 800 °C for 160 h. The microstructures were examined by SEM and the phases were analysed by EDS to determine their chemical compositions. Vickers micro-hardness tests were carried out.

X-ray powder diffraction measurements, angle and energy dispersive, were taken at ambient and high pressure (up to 26 GPa), using a Merrill–Bassett-type diamond anvil cell (DAC). The experiments were carried out in a 'Tel-Aviv'-type DAC with 500 μ m culets. The pressure was calibrated with the ruby fluorescent technique [4]. The powder sample was held in Si oil as the pressure medium in a 250 μ m diameter stainless steel gasket.

3. Results and discussion

Morphology of the structure

 UFe_5Al_7 and $Fe-Al (\sim 2 wt\%)$ were identified in the as-cast sample in the electron microscope micrograph. Large grains of UFe_5Al_7 were observed, while in the grain boundaries a FeAl phase [5] was identified; figure 1. The amount of FeAl phase decreased with the annealing process.

Micro-hardness tests

The hardnesses of the UFe₅Al₇ and the FeAl phases are 79.9(2.5) and 66.6(4.7) kg mm⁻², respectively, for the 800 °C heat-treated sample. This is higher by an order of magnitude compared with Al (\sim 35–48 kg mm⁻²) and U (\sim 187–250 kg mm⁻²) [6, 7].

X-ray

The powder diffraction spectra of the sample treated at 800 °C for seven days taken using Cu K α radiation and a SiO monochromator are shown in figure 2.

Figure 2. The powder diffraction spectra of UFe₅Al₇ at ambient pressure.

Figure 3. The four partial structures of UFe₅Al₇ of the $R(Fe, Al)_{12}$ type.

Table 1. Structural parameters of UFe5Al7.

	UFe5Al7		
	0 GPa	11.5 GPa	20.6 GPa
a (Å)	8.696	8.459	8.201
c (Å)	5.020	4.841	4.721
c/a	0.577	0.572	0.575
V (Å ³)	379.61	346.40	317.52
X (8i)	0.342	0.342	0.342
X (8j)	0.285	0.284	0.283

ThMn₁₂-type structure of the R(Fe, Al)₁₂ (R = rare earth or actinides) intermetallics is described by the tetragonal space group I4/mmm. The unit cell contains two formula units and is composed of four partial structures formed by R in the 2a (0, 0, 0), Fe in the 8f (0.25, 0.25, 0.25), Al in the 8i (x, 0, 0) and Al/Fe in the 8j (x, .5, 0) sites (figure 3).

The x-ray diffraction measurements indicate a main phase of UFe₅Al₇ and a residual phase of FeAl [5] in agreement with the above references and the morphology. Rietveld [8] analysis with R = 10% indicates that the UFe₅Al₇ compound has a ThMn₁₂-type, *I*4/*mmm* symmetry tetragonal structure with the lattice parameters a = 8.6963(9) Å and c = 5.0205(8) Å. This low-uranium-content compound exhibits a large interatomic U–U distance, well beyond the Hill limit.

Figure 4. The powder diffraction spectra of UFe₅Al₇ at 0.5 and 17.5 GPa.

The amount of the residual phase of FeAl was determined by a Rietveld analysis as 2 wt% ± 1 of the sample. The amount of the FeAl phase in the sample decreased upon annealing as was indicated by x-ray diffraction and morphology. This is consistent with the previous results. The lattice parameter of this phase is a = 2.909 Å, with R = 11.7%.

X-rays under pressure

The UFe₅Al₇ maintains the tetragonal symmetry as a function of pressure, as was determined by the Rietveld analysis; figure 4. The volume–pressure curve calculated from the x-ray analysis is given in figure 5. $V/V_0 = 0.83$ at 26.0 GPa.

The unit cell and the atomic positional parameters are compiled in table 1. They are the results from the Rietveld analysis.

Figure 5. The volume-pressure curve for UFe₅Al₇.

References

- [1] Andreev A V, Nakotte H and de Boer F R 1992 J. Alloys Compounds 55-60 182
- [2] Schäfer W, Kockelmann W, Halevy I and Gal J 2000 Mater. Sci. Forum 321-4 670
- [3] Suski W 1990 J. Magn. Magn. Mater. 90-1 99
- [4] Jayaraman A 1983 Rev. Mod. Phys. 55 65
- [5] Schäfer W, Will G, Gal J and Suski W 1989 J. Less-Common Met. 149 237
- [6] Mills K 1990 ASM Metals Handbook vol 2 10th edn (Ohio, USA: Metals park)
- [7] Brady G S and Clauser H R 1990 Materials Handbook 14th edn (New York: McGraw-Hill)
- Young R A, Sakthivel A, Moss T S and Paiva-Santos C O 1994 Rietveld Analysis of X-ray and Neutron Diffraction Patterns (Atlanta, GA, Dec. 1994)